As described above (see MPI Data Distribution), in order to
allocate your arrays, before creating a plan, you must first
call one of the following routines to determine the required
allocation size and the portion of the array locally stored on a given
process. The MPI_Comm
communicator passed here must be
equivalent to the communicator used below for plan creation.
The basic interface for multidimensional transforms consists of the functions:
ptrdiff_t fftw_mpi_local_size_2d(ptrdiff_t n0, ptrdiff_t n1, MPI_Comm comm, ptrdiff_t *local_n0, ptrdiff_t *local_0_start); ptrdiff_t fftw_mpi_local_size_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2, MPI_Comm comm, ptrdiff_t *local_n0, ptrdiff_t *local_0_start); ptrdiff_t fftw_mpi_local_size(int rnk, const ptrdiff_t *n, MPI_Comm comm, ptrdiff_t *local_n0, ptrdiff_t *local_0_start); ptrdiff_t fftw_mpi_local_size_2d_transposed(ptrdiff_t n0, ptrdiff_t n1, MPI_Comm comm, ptrdiff_t *local_n0, ptrdiff_t *local_0_start, ptrdiff_t *local_n1, ptrdiff_t *local_1_start); ptrdiff_t fftw_mpi_local_size_3d_transposed(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2, MPI_Comm comm, ptrdiff_t *local_n0, ptrdiff_t *local_0_start, ptrdiff_t *local_n1, ptrdiff_t *local_1_start); ptrdiff_t fftw_mpi_local_size_transposed(int rnk, const ptrdiff_t *n, MPI_Comm comm, ptrdiff_t *local_n0, ptrdiff_t *local_0_start, ptrdiff_t *local_n1, ptrdiff_t *local_1_start);
These functions return the number of elements to allocate (complex
numbers for DFT/r2c/c2r plans, real numbers for r2r plans), whereas
the local_n0
and local_0_start
return the portion
(local_0_start
to local_0_start + local_n0 - 1
) of the
first dimension of an n0 × n1 × n2 × … × nd-1 array that is stored on the local
process. See Basic and advanced distribution interfaces. For
FFTW_MPI_TRANSPOSED_OUT
plans, the ‘_transposed’ variants
are useful in order to also return the local portion of the first
dimension in the n1 × n0 × n2 ×…× nd-1 transposed output. See Transposed distributions. The advanced interface for multidimensional
transforms is:
ptrdiff_t fftw_mpi_local_size_many(int rnk, const ptrdiff_t *n, ptrdiff_t howmany, ptrdiff_t block0, MPI_Comm comm, ptrdiff_t *local_n0, ptrdiff_t *local_0_start); ptrdiff_t fftw_mpi_local_size_many_transposed(int rnk, const ptrdiff_t *n, ptrdiff_t howmany, ptrdiff_t block0, ptrdiff_t block1, MPI_Comm comm, ptrdiff_t *local_n0, ptrdiff_t *local_0_start, ptrdiff_t *local_n1, ptrdiff_t *local_1_start);
These differ from the basic interface in only two ways. First, they
allow you to specify block sizes block0
and block1
(the
latter for the transposed output); you can pass
FFTW_MPI_DEFAULT_BLOCK
to use FFTW's default block size as in
the basic interface. Second, you can pass a howmany
parameter,
corresponding to the advanced planning interface below: this is for
transforms of contiguous howmany
-tuples of numbers
(howmany = 1
in the basic interface).
The corresponding basic and advanced routines for one-dimensional transforms (currently only complex DFTs) are:
ptrdiff_t fftw_mpi_local_size_1d( ptrdiff_t n0, MPI_Comm comm, int sign, unsigned flags, ptrdiff_t *local_ni, ptrdiff_t *local_i_start, ptrdiff_t *local_no, ptrdiff_t *local_o_start); ptrdiff_t fftw_mpi_local_size_many_1d( ptrdiff_t n0, ptrdiff_t howmany, MPI_Comm comm, int sign, unsigned flags, ptrdiff_t *local_ni, ptrdiff_t *local_i_start, ptrdiff_t *local_no, ptrdiff_t *local_o_start);
As above, the return value is the number of elements to allocate
(complex numbers, for complex DFTs). The local_ni
and
local_i_start
arguments return the portion
(local_i_start
to local_i_start + local_ni - 1
) of the
1d array that is stored on this process for the transform
input, and local_no
and local_o_start
are the
corresponding quantities for the input. The sign
(FFTW_FORWARD
or FFTW_BACKWARD
) and flags
must
match the arguments passed when creating a plan. Although the inputs
and outputs have different data distributions in general, it is
guaranteed that the output data distribution of an
FFTW_FORWARD
plan will match the input data distribution
of an FFTW_BACKWARD
plan and vice versa; similarly for the
FFTW_MPI_SCRAMBLED_OUT
and FFTW_MPI_SCRAMBLED_IN
flags.
See One-dimensional distributions.